By Topic

Outdoor HV composite polymeric insulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hackam, R. ; Dept. of Electr. & Comput. Eng., Windsor Univ., Ont.

HV composite polymeric insulators are being accepted increasingly for use in outdoor installations by the traditionally cautious electric power utilities worldwide. They currently represent ~60 to 70% of newly installed HV insulators in North America. The tremendous growth in the applications of non-ceramic composite insulators is due to their advantages over the traditional ceramic and glass insulators. These include light weight, higher mechanical strength to weight ratio, resistance to vandalism, better performance in the presence of heavy pollution in wet conditions, and comparable or better withstand voltage than porcelain or glass insulators. However, because polymeric insulators are relatively new, the expected lifetime and their long-term reliability are not known and therefore are of concern to users. Additionally they might suffer from erosion and tracking in the presence of severe contamination and sustained moisture. This leads to the development of dry band arcing that under certain circumstances could lead to failure of polymer insulators. In this paper a review is presented of the recent performance experience of HV composite polymeric insulators in outdoor service, testing methods, aging, the ranking of the materials, the role of fillers, the role of low molecular weight components present in the insulators, the mechanisms responsible for the loss and recovery of hydrophobicity, one of the most important properties of polymers, the mechanisms of failure, detection of faults, type and quantity of natural contaminants, effects of exposure to rain, hydrocarbons, stationary air and wind, various methods to optimize the electrical performance and a relatively new method for evaluating the performance status of polymeric insulators in the field

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:6 ,  Issue: 5 )