By Topic

Simulation study on semiconductor laser mode locking using nonlinear coupling in multimode-interference waveguide amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiann-Chang Li ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Yean-Woei Kiang ; Yang, C.C.

The feasibility of a passively mode-locked semiconductor laser with a multimode-interference (MMI) waveguide amplifier is numerically studied using a two-dimensional time-domain beam-propagation method. In an appropriately designed ring cavity, a pulse can be compressed from a few hundred picoseconds to several picoseconds, as a result of the interplay between linear coupling and gain saturation in the MMI waveguide amplifier. The asymptotically stable pulse peak position and pulsewidth imply the feasibility of passively mode-locking semiconductor lasers. The frequency chirping of the compressed pulse and the lateral distribution of the output beam are numerically analyzed in detail. Our simulations show that mode locking can be implemented within a fairly broad range of injection current and cavity alignment

Published in:

Quantum Electronics, IEEE Journal of  (Volume:35 ,  Issue: 11 )