By Topic

Experimental investigation of an optically pumped mid-infrared carbon monoxide laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. E. McCord ; Direct Energy Laser Concepts, Kirtland Air Force Base, NM, USA ; H. C. Miller ; G. Hager ; A. I. Lampson
more authors

Results from a dual experimental/theoretical investigation of an optically pumped room-temperature carbon monoxide (CO) laser are discussed. Ro-vibrational transitions in the (2, 0) overtone of CO at 2.3 μm were pumped with an optical parametric oscillator to generate lasing on (2, 1) band transitions near 4.7 μm. During the build-up of the laser pulse, only rotational redistribution of the initial optically pumped population was observed in the resolved CO spectra. Calculations describing the CO laser pulse dynamics and collisional relaxation rates support this observation. The addition of helium and argon bath gases enhanced the rotational relaxation process. A pressure dependent loss mechanism that degrades optical efficiency has been identified and possible causes are discussed

Published in:

IEEE Journal of Quantum Electronics  (Volume:35 ,  Issue: 11 )