By Topic

Analysis of radiation mode effects on oscillating properties of DFB lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kinoshita, J. ; Dept. of Optoelectron. Semicond. Eng., Toshiba Corp., Kawasaki, Japan

The effects of radiation mode on the oscillating properties of distributed feedback (DFB) lasers with second-order corrugations are analyzed for designing a new type of DFB laser. A formulation based on the transfer matrix technique is applied to calculating Streifer's ζ-terms added to the coupled-wave equations. These terms represent the effects of radiation and evanescent modes. This formulation greatly simplifies the analysis of distributed resonance along multilayered waveguide structures with arbitrary-shaped second-order corrugations. The effects of vertical resonance are also incorporated into the formulation. Various types of DFB lasers with phase-shifted second-order corrugations are analyzed using this method. It is found that the phase shift and the blaze of the corrugations greatly affect the longitudinal mode selectivity. A new phase-shift DFB laser structure with two complementary blazing regions connected at the shift is proposed. It is demonstrated that this structure has small radiation loss resulting in low-threshold performance despite employing second-order corrugations

Published in:

Quantum Electronics, IEEE Journal of  (Volume:35 ,  Issue: 11 )