By Topic

A compliant contact model with nonlinear damping for simulation of robotic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marhefka, D.W. ; Dept. of Electr. Eng., Ohio State Univ., Columbus, OH, USA ; Orin, D.E.

Contact modeling is an important aspect of simulation of many robotic tasks. In the paper, a compliant contact model with nonlinear damping is investigated, and many previously unknown characteristics of the model are developed. Compliance is used to eliminate many of the problems associated with using rigid body models with Coulomb friction, while the use of nonlinear damping eliminates the discontinuous impact forces and most sticky tensile forces which arise in Kelvin-Voigt linear models. Two of the most important characteristics of the model are the dependence of the coefficient of restitution on velocity and damping in a physically meaningful manner, and its computational simplicity. A full mathematical development for an impact response is given, along with the effects of the system and model parameters on energy loss. A quasistatic analysis gives results which are consistent with energy loss characteristics of a more complex distributed foundation model under sustained contact conditions. A foot contact example for a walking machine is given which demonstrates the applicability of the model for impact on foot placement, sustained contact during the support phase, and the breaking of the contact upon liftoff of the foot

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:29 ,  Issue: 6 )