By Topic

A novel nanostructured microstrip device for tunable stopband filtering applications at microwaves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
I. Huynen ; Univ. Catholique de Louvain, Belgium ; G. Goglio ; D. Vanhoenacker ; A. Vander Vorst

The authors present a novel microstrip structure using a nanoscale porous substrate filled by a ferromagnetic material, forming an array of nanowires perpendicular to the ground plane. When compared with photonic bandgap structures, the stopband behavior is created here by a gyromagnetic resonance phenomenon in the metallic nanowires. This resonance is tuned by means of a DC magnetic field parallel to the nanowires, in a very good agreement with the gyromagnetic theory. Also, tuning can be achieved over more than one octave, because the nanoscale geometry ensures that fields penetrate into the whole wire area up to 40 GHz. Other advantages are detailed in this work

Published in:

IEEE Microwave and Guided Wave Letters  (Volume:9 ,  Issue: 10 )