Cart (Loading....) | Create Account
Close category search window
 

Aperture-coupled patch antenna on UC-PBG substrate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Coccioli, Roberto ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; Yang, Fei-Ran ; Ma, Kuang-Ping ; Itoh, T.

The recently developed uniplanar compact photonic bandgap (UC-PBG) substrate is successfully used to reduce surface-wave losses for an aperture-coupled fed patch antenna on a thick high dielectric-constant substrate. The surface-wave dispersion diagram of the UC-PBG substrate has been numerically computed for two different substrate thickness (25 and 50 mil) and found to have a complete stopband in the frequency range of 10.9-13.5 and 11.4-12.8 GHz, respectively. The thicker substrate is then used to enhance broadside gain of a patch antenna working in the stopband at 12 GHz. Computed results and measured data show that, due to effective surface-wave suppression, the antenna mounted on the UC-PBG substrate has over 3-dB higher gain in the broadside direction than the same antenna etched on a grounded dielectric slab with same thickness and dielectric constant. Cross-polarization level remains 13 dB down the co-polar component level for both E- and H-planes

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:47 ,  Issue: 11 )

Date of Publication:

Nov 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.