By Topic

Hidden multiresolution random fields and their application to image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Wilson ; Dept. of Comput. Sci., Warwick Univ., Coventry, UK ; Chang-Tsun Li

In this paper a new class of random field, defined on a multiresolution array structure, is described. Some of the fundamental statistical properties of the model are established. Estimation from noisy data is then considered and a new procedure, multiresolution maximum a posteriori estimation, is defined. These ideas are then applied to the problem of segmenting images containing a number of regions. Implementation of the Bayesian approach is based on a multiresolution form of Gibbs sampling. It is shown that the model forms an excellent basis for the segmentation of such images, which works with no a priori information on the number or sizes of the regions

Published in:

Image Analysis and Processing, 1999. Proceedings. International Conference on

Date of Conference: