By Topic

Unsupervised multiscale image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kam, A.H. ; Dept. of Eng., Cambridge Univ., UK ; Fitzgerald, W.J.

We propose a general unsupervised multiscale feature-based approach towards image segmentation. Clusters in the feature space are assumed to be properties of underlying classes, the recovery of which is achieved by the use of the mean shift procedure, a robust nonparametric decomposition method. The subsequent classification procedure consists of Bayesian multiscale processing which models the inherent uncertainty in the joint class and position domains via a multiscale random field model. At every scale, the segmentation map and model parameters are estimated by sampling using Markov chain Monte Carlo simulations. The method is applied to perform colour and texture segmentation with good results

Published in:

Image Analysis and Processing, 1999. Proceedings. International Conference on

Date of Conference: