Cart (Loading....) | Create Account
Close category search window
 

A quasi-static cluster-computing approach for dynamic channel assignment in cellular mobile communication systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yu-Kwong Kwok ; Dept. of Electr. & Electron. Eng., Hong Kong Univ., Hong Kong

Efficient management of the radio spectrum can be accomplished by making use of channel assignment techniques, which work by allocating different channels of the spectrum to the cells of the network in a conflict-free manner (i.e., the co-channel interference is minimized). The problem of dynamically reallocating the channels in response to change in user location patterns, which occurs frequently for a microcell network architecture, is even more difficult to tackle in a timely manner. Most existing approaches use various sequential search-based heuristics which cannot produce high-quality allocation fast enough to cope with the frequent traffic requirement variations. In this paper, we propose a quasi-static approach which combines the merits of both static and dynamic schemes. The static component of our approach uses a parallel genetic algorithm to generate a suite of representative assignments based on a set of different estimated traffic scenarios. At on-line time, the dynamic component observes the actual traffic requirement and retrieves the representative assignment of the closest scenario from the off-line table. The retrieved assignment is then quickly refined by using a fast parallel local search algorithm. Our extensive simulation experiments have indicated that the proposed quasi-static system outperforms other dynamic channel assignment techniques significantly in terms of both blocking probabilities and computational overhead

Published in:

Vehicular Technology Conference, 1999. VTC 1999 - Fall. IEEE VTS 50th  (Volume:4 )

Date of Conference:

1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.