Cart (Loading....) | Create Account
Close category search window
 

Experimental optimization of confined air jet impingement on a pin fin heat sink

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brignoni, L.A. ; Dept. of Mech. Eng., Wisconsin Univ., Milwaukee, WI, USA ; Garimella, Suresh V.

A variety of nozzle configurations were tested to characterize and optimize the performance of confined impinging air jets used in conjunction with a pin-fin heat sink. Four single nozzles of different diameters and two multiple-nozzle arrays were studied at a fixed nozzle-to-target spacing, for different turbulent Reynolds numbers (5000⩽Re⩽20000). Variations in the output power level of the heat source and nozzle-to-target spacing were found to have only modest effects on heat transfer at a fixed Reynolds number. Enhancement factors were computed for the heat sink relative to a bare surface, and were in the range of 2.8-9.7, with the largest value being obtained for the largest single nozzle (12.7 mm diameter). Average heat transfer coefficients and thermal resistance values are reported for the heat sink as a function of Reynolds number, air flow rate, pumping power, and pressure drop, to aid in optimizing the jet impingement configuration for given design constraints

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:22 ,  Issue: 3 )

Date of Publication:

Sep 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.