By Topic

Tree-structured nonlinear signal modeling and prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
O. J. J. Michel ; Lab. de Phys., Ecole Normale Superieure de Lyon, France ; A. O. Hero ; A. E. Badel

We develop a regression tree approach to identification and prediction of signals that evolve according to an unknown nonlinear state space model. In this approach, a tree is recursively constructed that partitions the p-dimensional state space into a collection of piecewise homogeneous regions utilizing a 2p-ary splitting rule with an entropy-based node impurity criterion. On this partition, the joint density of the state is approximately piecewise constant, leading to a nonlinear predictor that nearly attains minimum mean square error. This process decomposition is closely related to a generalized version of the thresholded AR signal model (ART), which we call piecewise constant AR (PCAR). We illustrate the method for two cases where classical linear prediction is ineffective: a chaotic “double-scroll” signal measured at the output of a Chua-type electronic circuit and a second-order ART model. We show that the prediction errors are comparable with the nearest neighbor approach to nonlinear prediction but with greatly reduced complexity

Published in:

IEEE Transactions on Signal Processing  (Volume:47 ,  Issue: 11 )