By Topic

A simple randomized algorithm for sequential prediction of ergodic time series

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. Gyorfi ; Dept. of Econ., Tech. Univ. Budapest, Hungary ; G. Lugosi ; G. Morvai

We present a simple randomized procedure for the prediction of a binary sequence. The algorithm uses ideas from previous developments of the theory of the prediction of individual sequences. We show that if the sequence is a realization of a stationary and ergodic random process then the average number of mistakes converges, almost surely, to that of the optimum, given by the Bayes predictor. The desirable finite-sample properties of the predictor are illustrated by its performance for Markov processes. In such cases the predictor exhibits near-optimal behavior even without knowing the order of the Markov process. Prediction with side information is also considered

Published in:

IEEE Transactions on Information Theory  (Volume:45 ,  Issue: 7 )