By Topic

Quantization based on a novel sample-adaptive product quantizer (SAPQ)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dong Sik Kim ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; N. B. Shroff

In this paper, we propose a novel feedforward adaptive quantization scheme called the sample-adaptive product quantizer (SAPQ). This is a structurally constrained vector quantizer that uses unions of product codebooks. SAPQ is based on a concept of adaptive quantization to the varying samples of the source and is very different from traditional adaptation techniques for nonstationary sources. SAPQ quantizes each source sample using a sequence of quantizers. Even when using scalar quantization in SAPQ, we can achieve performance comparable to vector quantization (with the complexity still close to that of scalar quantization). We also show that important lattice-based vector quantizers can be constructed using scalar quantization in SAPQ. We mathematically analyze SAPQ and propose a algorithm to implement it. We numerically study SAPQ for independent and identically distributed Gaussian and Laplacian sources. Through our numerical study, we find that SAPQ using scalar quantizers achieves typical gains of 13 dB in distortion over the Lloyd-Max quantizer. We also show that SAPQ can he used in conjunction with vector quantizers to further improve the gains

Published in:

IEEE Transactions on Information Theory  (Volume:45 ,  Issue: 7 )