Cart (Loading....) | Create Account
Close category search window

Polarization sensitive optical coherence tomography of the rabbit eye

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ducros, M.G. ; Biomed. Eng. Program, Texas Univ., Austin, TX, USA ; de Boer, J.F. ; Huai-En Huang ; Chao, L.C.
more authors

A polarization-sensitive optical coherence tomography (PSOCT) system was used to acquire depth-resolved images of the Stokes parameters of light backreflected from ex vivo rabbit eyes. The light backreflected from the eye interferes with that from the reference arm and is coherently detected in two orthogonal polarization channels. The two signals are digitized and the four Stokes parameters (I, Q, U, and V) of the backreflected light are computed for light backreflected from each longitudinal/lateral position in the eye. From the measured Stokes parameters, an estimate of the relative phase retardation between the two orthogonal polarizations can be determined. Two eyes were enucleated, imaged within 6-h postmortem and histology performed. Images of the Stokes parameters of light backreflected from the corneal stroma show significant local variations in the polarization state, possibly due to local changes in stromal structure. Depth-resolved Stokes parameter images of light backreflected from the retina were also acquired. A birefringent layer was observed at the position consistent with the known location of the nerve fiber layer (NFL). The local thickness of the birefringent layer determined with PSOCT was in good agreement with values determined histologically

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:5 ,  Issue: 4 )

Date of Publication:

Jul/Aug 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.