By Topic

Accurate modeling and parameter extraction for MOS transistors valid up to 10 GHz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
S. H. -M. Jen ; IC Media Corp., Santa Clara, CA, USA ; C. C. Enz ; D. R. Pehlke ; M. Schroter
more authors

Accurate modeling and efficient parameter extraction of the small signal equivalent circuit of submicrometer MOS transistors for high-frequency operation are presented. The equivalent circuit is based on a quasi-static approximation which was found to be adequate in the gigahertz range if the extrinsic components are properly modeled. It includes the complete intrinsic quasi-static MOS model, the series resistances of gate, source, and drain, and a substrate coupling network. Direct extraction is performed by Y-parameter analysis on the equivalent circuit in the linear and saturation regions of operation. The extracted results are physically meaningful and can be used to “de-embed” the extrinsic effects such as the substrate coupling within the device. Good agreement has been obtained between the simulation results of the equivalent circuit and measured data up to 10 GHz

Published in:

IEEE Transactions on Electron Devices  (Volume:46 ,  Issue: 11 )