System Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Convolutionally coded multicarrier DS-CDMA systems in a multipath fading channel. I. Performance analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rowitch, D.N. ; Dept. of Electr. & Comput. Eng., California Univ., San Diego, La Jolla, CA, USA ; Milstein, L.B.

This paper presents a multicarrier asynchronous direct-sequence code-division multiple-access (DS-CDMA) system wherein the output of a convolutional encoder modulates multiple band-limited DS-CDMA waveforms, which are transmitted in parallel at different carrier frequencies. The receiver detects and combines signals for the desired user and feeds a soft-decision Viterbi decoder. The performance of this system is compared to that of a conventional single-carrier DS-CDMA system with a RAKE receiver, assuming a slowly varying frequency-selective Rayleigh fading channel and assuming the presence of additive white Gaussian noise and multiple-access interference. Results will demonstrate similar performance at roughly equal receiver complexity

Published in:

Communications, IEEE Transactions on  (Volume:47 ,  Issue: 10 )