By Topic

Distributed covering by ant-robots using evaporating traces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
I. A. Wagner ; IBM Haifa Res. Lab., Israel ; M. Lindenbaum ; A. M. Bruckstein

We investigate the ability of a group of robots, that communicate by leaving traces, to perform the task of cleaning the floor of an un-mapped building, or any task that requires the traversal of an unknown region. More specifically, we consider robots which leave chemical odour traces that evaporate with time, and are able to evaluate the strength of smell at every point they reach, with some measurement error. Our abstract model is a decentralized multi-agent adaptive system with a shared memory, moving on a graph whose vertices are the floor-tiles. We describe three methods of covering a graph in a distributed fashion, using smell traces that gradually vanish with time, and show that they all result in eventual task completion, two of them in a time polynomial in the number of tiles. Our algorithms can complete the traversal of the graph even if some of the agents die or the graph changes during the execution, as long as the graph stays connected. Another advantage of our agent interaction processes is the ability of agents to use noisy information at the cost of longer cover time

Published in:

IEEE Transactions on Robotics and Automation  (Volume:15 ,  Issue: 5 )