By Topic

Robust adaptive fuzzy-neural controllers for uncertain nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yih-Guang Leu ; Dept. of Electr. Eng., Lee-Ming Inst. of Technol., Taipei, Taiwan ; Wei-Yen Wang ; Tsu-Tian Lee,

A robust adaptive fuzzy-neural controller for a class of unknown nonlinear dynamic systems with external disturbances is proposed. The fuzzy-neural approximator is established to approximate an unknown nonlinear dynamic system in a linearized way. The fuzzy B-spline membership function (BMF) which possesses a fixed number of control points is developed for online tuning. The concept of tuning the adjustable vectors, which include membership functions and weighting factors, is described to derive the update laws of the robust adaptive fuzzy-neural controller. Furthermore, the effect of all the unmodeled dynamics, BMF modeling errors and external disturbances on the tracking error is attenuated by the error compensator which is also constructed by fuzzy-neural inference. We prove that the closed-loop system which is controlled by the robust adaptive fuzzy-neural controller is stable and the tracking error will converge to zero under mild assumptions. Several examples are simulated in order to confirm the effectiveness and applicability of the proposed methods

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:15 ,  Issue: 5 )