Cart (Loading....) | Create Account
Close category search window

Polarization-independent interferometric optical-time-domain reflectometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kobayashi, M. ; NTT Opto-Electron. Lab., Ibaraki, Japan ; Hanafusa, H. ; Takada, K. ; Noda, J.

A polarization-independent interferometric optical-time-domain reflectometer is proposed and demonstrated. The experimental setup is composed of a superluminescent diode and a fiber coupler which combines a polarization-maintaining fiber and a conventional single-mode fiber to achieve a polarization-independent spatial profile of the reflectance in a single-mode fiber or waveguide sample. The polarization independence and the reliability of the measured reflectivity, were confirmed, and the measurement of loss and birefringence in an optical waveguide from its reflectance profile is demonstrated. The influence of dispersion in the fibers on the spatial resolution of the reflectometer is also discussed

Published in:

Lightwave Technology, Journal of  (Volume:9 ,  Issue: 5 )

Date of Publication:

May 1991

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.