By Topic

Ray casting architectures for volume visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ray, H. ; Dept. of Electr. & Comput. Eng., Rutgers Univ., New Brunswick, NJ, USA ; Pfister, H. ; Silver, D. ; Cook, T.A.

Real-time visualization of large volume data sets demands high-performance computation, pushing the storage, processing and data communication requirements to the limits of current technology. General-purpose parallel processors have been used to visualize moderate-size data sets at interactive frame rates; however, the cost and size of these supercomputers inhibits the widespread use for real-time visualization. This paper surveys several special-purpose architectures that seek to render volumes at interactive rates. These specialized visualization accelerators have cost, performance and size advantages over parallel processors. All architectures implement ray casting using parallel and pipelined hardware. We introduce a new metric that normalizes performance to compare these architectures. The architectures included in this survey are VOGUE, VIRIM, Array-Based Ray Casting, EM-Cube and VIZARD II. We also discuss future applications of special-purpose accelerators

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:5 ,  Issue: 3 )