By Topic

Using the distance distribution for approximate similarity queries in high-dimensional metric spaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. Ciaccia ; Bologna Univ., Italy ; M. Patella

We investigate the problem of approximate similarity (nearest neighbor) search in high-dimensional metric spaces, and describe how the distance distribution of the query object can be exploited so as to provide probabilistic guarantees on the quality of the result. This leads to a new paradigm for similarity search, called PAC-NN (probably approximately correct nearest neighbor) queries, aiming to break the “dimensionality curse”. PAC-NN queries return, with probability at least 1-δ, a (1+ε)-approximate NN-an object whose distance from the query q is less than (1+ε) times the distance between q and its NN. Analytical and experimental results obtained for sequential and index-based algorithms show that PAC-NN queries can be efficiently processed even on very high-dimensional spaces and that control can be exerted in order to tradeoff the accuracy of the result and the cost

Published in:

Database and Expert Systems Applications, 1999. Proceedings. Tenth International Workshop on

Date of Conference: