By Topic

Visualizing vector field topology in fluid flows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Helman, J.L. ; Dept. of Appl. Phys., Standard Univ., CA, USA ; Hesselink, Lambertus

Methods for automating the analysis and display of vector field topology in general, and flow topology in particular, are described. By using techniques to extract and visualize topological information, it is possible to combine the simplicity of schematic depictions with the quantitative accuracy of curves and surfaces computed directly from the data. Two-dimensional vector field topology is discussed, covering critical points and time-dependent flows, to provide a basis for the examination of topology in three-dimensional separated flows. Surface topology and separation structures in three-dimensional flows are then addressed. The construction of representations of tangent surfaces that are accurate, as well as efficient to compute and display, is examined, covering tessellation, clipping, and refinement. Locating, characterizing, and displaying three-dimensional critical points are considered.<>

Published in:

Computer Graphics and Applications, IEEE  (Volume:11 ,  Issue: 3 )