By Topic

Transform methods for seismic data compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Spanias, A.S. ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; Jonsson, S.B. ; Stearns, Samuel D.

The authors consider the development and evaluation of transform coding algorithms for the storage of seismic signals. Transform coding algorithms are developed using the discrete Fourier transform (DFT), the discrete cosine transform (DCT), the Walsh-Hadamard transform (WHT), and the Karhunen-Loeve transform (KLT). These are evaluated and compared to a linear predictive coding algorithm for data rates ranging from 150 to 550 bit/s. The results reveal that sinusoidal transforms are well-suited for robust, low-rate seismic signal representation. In particular, it is shown that a DCT coding scheme reproduces faithfully the seismic waveform at approximately one-third of the original rate

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:29 ,  Issue: 3 )