By Topic

Autonomous rovers for Mars exploration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
R. Washington ; NASA Ames Res. Center, Moffett Field, CA, USA ; K. Golden ; J. Bresina ; D. E. Smith
more authors

The Pathfinder mission demonstrated the potential for robotic Mars exploration but at the same time indicated the need for more robust rover autonomy. Future planned missions call for long traverses over unknown terrain, robust navigation and instrument placement, and reliable operations for extended periods of time. Ultimately, missions may visit multiple science sites in a single day and perform opportunistic science data collection, as well as complex scouting, construction, and maintenance tasks in preparation for an eventual human presence. Significant advances in robust autonomous operations are needed to enable these types of missions. Towards this end, we have designed an on-board executive architecture that incorporates robust flexible operation, resource utilization, and failure recovery. In addition, we have designed ground tools to produce and refine contingent schedules that take advantage of the on-board architecture's flexible execution characteristics. Together, the on-board executive and the ground tools constitute an integrated rover autonomy architecture

Published in:

Aerospace Conference, 1999. Proceedings. 1999 IEEE  (Volume:1 )

Date of Conference: