Cart (Loading....) | Create Account
Close category search window
 

A study on the development of transmission-type extrinsic Fabry-Perot interferometric optical fiber sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sang-Hoon Kim ; Dept. of Mech. Eng., Korea Adv. Inst. of Sci. & Technol., Seoul, South Korea ; Jung-Ju Lee ; Dong-Chun Lee ; Il-Bum Kwon

The conventional reflection-type extrinsic Fabry-Perot interferometric (EFPI) optical fiber sensor has good sensitivity and resolution compared with other types of optical fiber sensors. However, they have the disadvantage that the distinction of strain direction of EFPI is difficult because of measurement method by only fringe counting. This paper presents the newly developed transmission-type EFPI (TEFPI) optical fiber sensor, which has been improved by additional functions, and whose measuring system differs from that of the reflection-type EFPI optical fiber sensors using a single-mode fiber (SMF) and multimode (MMF) fibers as light guides and reflectors, respectively. The output signal of the TEFPI optical fiber sensor was analyzed with the uniform plane wave-based model, the SMF power distribution-based model and the splice loss-based model; the analyzed signals were then verified experimentally. Based on the results of analysis, the TEFPI optical fiber sensor was fabricated using two single-mode fibers connected to the light source and optical receiver; this was then used in strain measurement. The strain measured by the TEFPI optical fiber sensor was compared with that measured by the electric strain gauge

Published in:

Lightwave Technology, Journal of  (Volume:17 ,  Issue: 10 )

Date of Publication:

Oct 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.