By Topic

A 10 Gb/s optical code division multiplexing using 8-chip optical bipolar code and coherent detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N. Wada ; Commun. Res. Lab., Minist. of Posts & Telecommun., Tokyo, Japan ; K. Kitayama

bOptical code division multiplexing (OCDM) using optical bipolar code and coherent detection is a new multiplexing method for future fiber-optic communication networks. Some optical bipolar codes, which are described by the combination of phase of optical chip pulses, with a repetition frequency 10 GHz are generated experimentally. Temporal matched filtering for the 10 Gb/s OCDM is demonstrated using optical encoder and decoder, and their fundamental properties are investigated. Effect of interference code is shown experimentally and discussed. The novel coherent detection system with autocorrelation sidelobe suppression using balanced detector and local light source is proposed. The pseudocoherent detection is demonstrated experimentally by using a clock pulse. Advantageous properties of the coherent detection are shown. The fundamental functions to realize the gigabit rate OCDM system is revealed

Published in:

Journal of Lightwave Technology  (Volume:17 ,  Issue: 10 )