By Topic

Simultaneous localization and map building for mobile robot navigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. C. Anousaki ; Dept. of Mech. Eng., Nat. Tech. Univ. of Athens, Greece ; K. J. Kyriakopoulos

Inexpensive ultrasonic sensors, incremental encoders, and grid-based probabilistic modeling are used for improved robot navigation in indoor environments. For model-building, range data from ultrasonic sensors are constantly sampled and a map is built and updated immediately while the robot is travelling through the workspace. The local world model is based on the concept of an occupancy grid. The world model extracted from the range data is based on the geometric primitive of line segments. For the extraction of these features, methods such as the Hough transform and clustering are utilized. The perceived local world model along with dead-reckoning and ultrasonic sensor data are combined using an extended Kalman filter in a localization scheme to estimate the current position and orientation of the mobile robot, which is subsequently fed to the map-building algorithm. Implementation issues and experimental results with the Nomad 150 mobile robot in a real-world indoor environment (office space) are presented

Published in:

IEEE Robotics & Automation Magazine  (Volume:6 ,  Issue: 3 )