By Topic

COTS based open systems for military avionics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Paul, J.T. ; Naval Air Warfare Center, China Lake, CA, USA

The DoD has many acquisition programs that are aggressively implementing open architecture principles in new avionics systems. Since “open” is an unclear attribute, projects eventually give in to a point solution that has no flexibility to cost effectively keep up with rapid changes in technology. The Open Systems Development Initiative (OSDI) project utilized COTS products to study the feasibility of building an open system that has plug-and-play capabilities. Lessons learned from the AV-8B Open Systems Core Avionics Requirements (OSCAR) and the F/A-18 Advanced Mission Computers and Displays (AMC&D) programs clearly indicated that understanding the underlying interfaces is crucial to keeping the system as open as possible to take advantage of the rapid changes in technology. A matrix of Key Open Standard Interfaces (KOSI), called the KOSI matrix, was developed and an applicable standard was identified for each interface. A list of non-conforming interfaces was also identified and the use of extensions or wrappers was investigated in an attempt to comply with standards. Standardization, rather than optimization of such interfaces, was considered more beneficial. It became evident that, with the exception of ruggedization, there is no difference in the use of COTS products for either commercial or military systems. Performing a KOSI analysis helped identify the key interfaces and standards, thus enabling the OSDI system to be scalable, portable and interoperable. A good KOSI matrix provides a vehicle for clear communication and helps systems integration and technology insertion to be less painful than what it is today. It helps reduce time-to-market and provides guidance to systems engineers and vendors to keep the system open

Published in:

Aerospace and Electronic Systems Magazine, IEEE  (Volume:14 ,  Issue: 9 )