By Topic

An effective near-field far-field transformation technique from truncated and inaccurate amplitude-only data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bucci, O.M. ; Dipt. di Ingegneria Elettronica e delle Telecommunicazioni, Naples Univ., Italy ; D'Elia, G. ; Migliore, M.D.

A general approach to the near-field far-field transformation from amplitude only near-field data is presented. The estimation of the far field is stated as an intersection finding problem and is solved by the minimization of a suitable functional. The difficulties related to the possible trapping of the algorithm by a false solution (common to any nonlinear inverse problem) are mitigated by setting the problem in the space of the squared field amplitudes (as already done in a number of existing papers) and by incorporating all the a priori knowledge concerning the system under test in the formulation of the problem. Accordingly, the a priori information concerning the far field, the near field outside the measurement region and the accuracy of the measurement setup and its dynamic range are properly taken into account in the objective functional. The intrinsic ill conditioning of the problem is managed by adopting a general, flexible, and nonredundant sampling representation of the field, which takes into account the geometrical characteristics of the source. As a consequence, the number of unknowns is minimized and a technique is obtained, which easily matches the available knowledge concerning the behavior of the field. The effectiveness of the approach is shown by reporting the main results of an extensive numerical analysis, as well as an experimental validation performed by using a very low cost near field facility available at the Electronic Engineering Department, University of Napoli, Italy

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:47 ,  Issue: 9 )