By Topic

New method of dealing with partially inconsistent rule bases for fuzzy logic controller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jae-Soo Cho ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Taejon, South Korea ; Dong-Jo Park

A novel method of fuzzy logic control based on possibly inconsistent if-then rules representing uncertain knowledge or imprecise data is studied. When it is hard to obtain consistent rule bases, we propose a fuzzy logic control based on weighted rules depending on output performances using a neural network and we derive a weight updating algorithm. To guarantee convergence of the weights, a learning rate is developed by introducing a Lyapunov function. With the final weight change information, we can make better decisions by taking into consideration conflicting rules. The proposed method is applied to simple problems and simulation results are included. And real applications of the proposed method are also discussed.

Published in:

Fuzzy Systems Conference Proceedings, 1999. FUZZ-IEEE '99. 1999 IEEE International  (Volume:1 )

Date of Conference:

22-25 Aug. 1999