By Topic

Role of p-doping profile and regrowth on the static characteristics of 1.3-μm MQW InGaAsP-InP lasers: experiment and modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
G. L. Belenky ; State Univ. of New York, Stony Brook, NY, USA ; C. L. Reynolds ; D. V. Donetsky ; G. E. Shtengel
more authors

In this paper, we study both experimentally and theoretically how the change of the p-doping profile, particularly the p-i junction placement, affects the output characteristics of 1.3-μm InGaAsP-InP multiple-quantum-well (MQW) lasers. The relationship between the p-doping profile before and after regrowth is established, and the subsequent impact of changes in the p-i junction placement on the device output characteristics, is demonstrated. Device characteristics are simulated including carrier transport, capture of carriers into the quantum wells, the quantum mechanical calculation of the properties of the wells, and the solution for the optical mode and its population self-consistently as a function of diode bias. The simulations predict and the experiments confirm that an optimum p-i junction placement simultaneously maximizes external efficiency and minimizes threshold current. Tuning of the base epitaxial growth Zn profile allows one to fabricate MQW devices with a threshold current of approximately 80 A/cm 2 per well for devices with nine QW's at room temperature or lasers with a characteristic temperature T0=70 K within the temperature range of 20°C-80°C

Published in:

IEEE Journal of Quantum Electronics  (Volume:35 ,  Issue: 10 )