Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

High-efficiency cadmium-free Cu(In,Ga)Se2 thin-film solar cells with chemically deposited ZnS buffer layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nakada, Tokio ; Dept. of Electr. Eng. & Electron., Aoyama Gakuin Univ., Tokyo, Japan ; Furumi, K. ; Kunioka, Akio

Cadmium-free Cu(In,Ga)Se2 (CICS) thin-film solar cells with a MgF2/ZnO:Al/CBD-ZnS/CIGS/Mo/SLG structure have been fabricated using chemical bath deposition (CBD)-ZnS buffer layers and high-quality CICS absorber layers grown using molecular beam epitaxy (MBE) system. The use of CBD-ZnS, which is a wider band gap material than CBD-CdS, improved the quantum efficiency of fabricated cells at short wavelengths, leading to an increase in the short-circuit current. The best cell at present yielded an active area efficiency of 16.9% which is the highest value reported previously for Cd-free CIGS thin-film solar cells. The as-fabricated solar cells exhibited a reversible light-soaking effect under AM 1.5, 100 mW/cm2 illumination. This paper also presents a discussion of the issues relating to the use of the CBD-ZnS buffer material for improving device performance

Published in:

Electron Devices, IEEE Transactions on  (Volume:46 ,  Issue: 10 )