By Topic

Circuit modeling of the emitter-wrap-through solar cell

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Smith, D.D. ; Dept. of Voltaic Syt. Componenets, Sandia Nat. Labs., Albuquerque, NM, USA ; Gee, J.M. ; Bode, M.D. ; Jimeno, J.C.

Back-contact solar cells have the potential to reduce module assembly costs and give a higher conversion efficiency. Such a device must be simple to fabricate on an industrial scale and be tolerant of low minority-carrier diffusion lengths. The emitter-wrap-through (EWT) cell is a device design that can meet these goals. In this device, the diffused junction is present on both sides and is connected by laser-drilled holes through the silicon. EWT cells were frequently found to have poor fill factors (FFs) due to shunt-like behavior. The holes were found to possess no defects that adversely affect device performance. However, detailed equivalent circuit modeling of the EWT cell was able to explain the shunt-like behavior. Experiments were performed to confirm the physical mechanisms described by the equivalent circuit model. Device optimization guided by the equivalent circuit model has led to the demonstration of a large area EWT cell with a FF of 77.64% and efficiency of 18.2%

Published in:

Electron Devices, IEEE Transactions on  (Volume:46 ,  Issue: 10 )