By Topic

Finite-element analysis of complex axisymmetric radiating structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Greenwood, A.D. ; Air Force Res. Lab., Kirtland AFB, NM, USA ; Jian-Ming Jin

A finite-element method (FEM) is developed for the analysis of complex axisymmetric radiating structures. The method is based on the electric field formulation with the transverse field expanded in terms of edge-based vector basis functions and the azimuth component expanded using nodal-based scalar basis functions. This mixed representation of the electric field eliminates spurious solutions and permits an easy treatment of boundary conditions on conducting surfaces as well as across material interfaces. The FEM mesh is truncated using a previously developed cylindrical perfectly matched layer (PML). The method has been successfully applied to three radiating structures: a corrugated horn antenna, a spherical Luneburg lens, and a half Maxwell fish eye. Numerical results are presented to show the validity, accuracy, and efficiency of the method

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:47 ,  Issue: 8 )