By Topic

A rule-based fuzzy power system stabilizer tuned by a neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hosseinzadeh, N. ; Dept. of Electr. & Electron. Eng., Victoria Univ. of Technol., Melbourne, Vic., Australia ; Kalam, A.

A fuzzy logic power system stabilizer (FPSS) has been developed using speed and active power deviations as the controller input variables. The inference mechanism of the fuzzy logic controller is represented by a (7×7) decision table, i.e. 49 if-then rules. There is no need for a plant model to design the FPSS. Two scaling parameters have been introduced to tune the FPSS. These scaling parameters are the outputs of a neural network which gets the operating conditions of the power system as inputs. This mechanism of tuning the FPSS by the neural network, makes the FPSS adaptive to changes in the operating conditions. Therefore, the degradation of the system response, under a wide range of operating conditions, is less compared to the system response with a fixed-parameter FPSS. The tuned stabilizer has been tested by performing nonlinear simulations using a synchronous machine-infinite bus model. The responses are compared with the fixed-parameter FPSS and a conventional (linear) power system stabilizer. It is shown that the neuro-fuzzy stabilizer is superior to both of them

Published in:

Energy Conversion, IEEE Transactions on  (Volume:14 ,  Issue: 3 )