By Topic

Characterising the d-axis machine model of a turbogenerator using finite elements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arjona L., M.A. ; Inst. de Investigaciones Electr., Cuernavaca, Mexico ; Macdonald, Donald C.

An analysis of a long established fundamental assumption is presented. The assumption that superposition is valid in frequency response derived models is shown to be wrong, because eddy current losses in the solid rotor cannot be superimposed in the machine direct-axis. This implies that network theory is not valid in characterising the d-axis machine model. A machine model structure with one damper winding in the d-axis is derived from finite element analysis. Unequal mutual inductances in the machine d-axis are determined and hence the so-called differential leakage inductances are found and they are frequency dependent. The study is made on a 150 MVA turbine generator by simulating the standstill frequency response test with finite elements

Published in:

Energy Conversion, IEEE Transactions on  (Volume:14 ,  Issue: 3 )