By Topic

Scheduling multiprocessor tasks with genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Correa, R.C. ; Dept. de Comput., Univ. Fed. do Ceara, Brazil ; Ferreira, A. ; Rebreyend, P.

In the multiprocessor scheduling problem, a given program is to be scheduled in a given multiprocessor system such that the program's execution time is minimized. This problem being very hard to solve exactly, many heuristic methods for finding a suboptimal schedule exist. We propose a new combined approach, where a genetic algorithm is improved with the introduction of some knowledge about the scheduling problem represented by the use of a list heuristic in the crossover and mutation genetic operations. This knowledge-augmented genetic approach is empirically compared with a “pure” genetic algorithm and with a “pure” list heuristic, both from the literature. Results of the experiments carried out with synthetic instances of the scheduling problem show that our knowledge-augmented algorithm produces much better results in terms of quality of solutions, although being slower in terms of execution time

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:10 ,  Issue: 8 )