By Topic

Genetic scheduling for parallel processor systems: comparative studies and performance issues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zomaya, A.Y. ; Dept. of Electr. & Electron. Eng., Western Australia Univ., Nedlands, WA, Australia ; Ward, C. ; Macey, B.

Task scheduling is essential for the proper functioning of parallel processor systems. Scheduling of tasks onto networks of parallel processors is an interesting problem that is well-defined and documented in the literature. However, most of the available techniques are based on heuristics that solve certain instances of the scheduling problem very efficiently and in reasonable amounts of time. This paper investigates an alternative paradigm, based on genetic algorithms, to efficiently solve the scheduling problem without the need to apply any restricted assumptions that are problem-specific, such is the case when using heuristics. Genetic algorithms are powerful search techniques based on the principles of evolution and natural selection. The performance of the genetic approach will be compared to the well-known list scheduling heuristics. The conditions under which a genetic algorithm performs best will also be highlighted. This will be accompanied by a number of examples and case studies

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:10 ,  Issue: 8 )