Cart (Loading....) | Create Account
Close category search window
 

Trade-off between sequential and time warp-based parallel simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Quaglia, F. ; Dipartimento di Inf. e Sistemistica, Rome Univ., Italy ; Cortellessa, V. ; Ciciani, B.

Discrete event simulation is a methodology to study the behavior of complex systems. Its drawback is that, in order to get reliable results, simulations usually have to be run over a long stretch of time. This time requirement could decrease through the usage of parallel or distributed computing systems. In this paper, we analyze the Time Warp synchronization protocol for parallel discrete event simulation and present an analytical model evaluating the upper bound on the completion time of a Time Warp simulation. In our analysis, we consider the case of a simulation model with homogeneous logical processes, where “homogeneous” means they have the same average event routine time and the same state saving cost. Then we propose a methodology to determine when it is time-convenient to use a Time Warp synchronized simulation, instead of a sequential one, for a simulation model with features matching those considered in our analysis. We give an answer to this question without the need to preliminary generate the simulation code. Examples of methodology usage are reported for the case of both a synthetic benchmark and a real world model

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:10 ,  Issue: 8 )

Date of Publication:

Aug 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.