By Topic

Vector transfer by self-tested self-synchronization for parallel systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fenghao Mu ; SwitchCore, Lund, Sweden ; Svensson, C.

Communications between processing elements (PEs)in very large scale parallel systems become more challenging as the function and speed of the PEs improve continuously. Clocked I/O ports may malfunction if data read failure occurs due to clock skew. There are many drawbacks in global clock distribution utilized to reduce the clock skew. This paper addresses a self-tested self-synchronization (STSS) method for vector transfer between PEs. A test signal is added to remove the data read failure. The advantages of this method are: very high data throughput, less power consumption in clock distribution, no constraints on clock skew and system scale, easy in design, less latency. A failure zone concept is used to characterize the behavior of storage elements. By using a jitter injected test signal, a robust vector transfer between PEs with arbitrary clock phases is achieved and the headache problem of the global synchronization is avoided

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:10 ,  Issue: 8 )