Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Adaptive multiuser detection and beamforming for interference suppression in CDMA mobile radio systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper considers the problem of interference suppression in direct-sequence code-division multiple-access (DS-CDMA) systems over fading channels. An adaptive array receiver is presented which integrates multiuser detection, beamforming, and RAKE reception to mitigate cochannel interference and fading. The adaptive multiuser detector is formulated using a blind constrained energy minimization criterion and adaptation is carried out using a novel algorithm based on set-membership parameter estimation theory. The proposed detector overcomes the shortcomings of conventional LMS- and RLS-type algorithms, namely, that of slow convergence and large computational load, respectively. This is especially the case when strong interferers are present or when the number of adaptive weights is relatively large. DS-CDMA systems can have a relatively large number of spatially distributed interferers. Thus beamforming is based on direction-of-arrival (DOA) estimates provided by an approximate maximum-likelihood estimator (DOA-MLE). Unlike previous approaches, the DOA-MLE exploits the structure of the DS-CDMA signaling scheme resulting in robust performance and simple implementation in the presence of angle spreading. The overall method is suitable for real-time implementation and can substantially improve the interference suppression capabilities of a CDMA system

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:48 ,  Issue: 5 )