We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Neural and fuzzy robotic hand control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tascillo, A. ; Dept. of Electr. Eng., Binghamton Univ., NY, USA ; Bourbakis, N.

An efficient first grasp for a wheelchair robotic arm-hand with pressure sensing is determined and presented. The grasp is learned by combining the advantages of neural networks and fuzzy logic into a hybrid control algorithm which learns from its tip and slip control experiences. Neurofuzzy modifications are outlined, and basic steps are demonstrated in preparation for physical implementation. Choice of object approach vector based on fuzzy tip and slip data and an expert supervisor, as well as training of a diagnostic neural tip and slip controller, are the focus of this work

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:29 ,  Issue: 5 )