By Topic

Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ishibuchi, H. ; Dept. of Ind. Eng., Osaka Prefecture Univ., Japan ; Nakashima, T. ; Murata, T.

We examine the performance of a fuzzy genetics-based machine learning method for multidimensional pattern classification problems with continuous attributes. In our method, each fuzzy if-then rule is handled as an individual, and a fitness value is assigned to each rule. Thus, our method can be viewed as a classifier system. In this paper, we first describe fuzzy if-then rules and fuzzy reasoning for pattern classification problems. Then we explain a genetics-based machine learning method that automatically generates fuzzy if-then rules for pattern classification problems from numerical data. Because our method uses linguistic values with fixed membership functions as antecedent fuzzy sets, a linguistic interpretation of each fuzzy if-then rule is easily obtained. The fixed membership functions also lead to a simple implementation of our method as a computer program. The simplicity of implementation and the linguistic interpretation of the generated fuzzy if-then rules are the main characteristic features of our method. The performance of our method is evaluated by computer simulations on some well-known test problems. While our method involves no tuning mechanism of membership functions, it works very well in comparison with other classification methods such as nonfuzzy machine learning techniques and neural networks

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:29 ,  Issue: 5 )