By Topic

Line-based recognition using a multidimensional Hausdorff distance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xilin Yi ; ENSCO Inc., Springfield, VA, USA ; Camps, O.I.

A line-feature-based approach for model based recognition using a four-dimensional Hausdorff distance is proposed. This approach reduces the problem of finding the rotation, scaling, and translation transformations between a model and an image to the problem of finding a single translation minimizing the Hausdorff distance between two sets of points in a four-dimensional space. The implementation of the proposed algorithm can be naturally extended to higher dimensional spaces to efficiently find correspondences between n-dimensional patterns. The method performance and sensitivity to segmentation problems are quantitatively characterized using an experimental protocol with simulated data. It is shown that the algorithm performs well, is robust to occlusion and outliers, and that it degrades nicely as the segmentation problems increase. Experiments with real images are also presented

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:21 ,  Issue: 9 )