By Topic

Super-resolution reconstruction of image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Elad ; HP Labs., HPL-I, Haifa, Israel ; A. Feuer

In an earlier work (1999), we introduced the problem of reconstructing a super-resolution image sequence from a given low resolution sequence. We proposed two iterative algorithms, the R-SD and the R-LMS, to generate the desired image sequence. These algorithms assume the knowledge of the blur, the down-sampling, the sequences motion, and the measurements noise characteristics, and apply a sequential reconstruction process. It has been shown that the computational complexity of these two algorithms makes both of them practically applicable. In this paper, we rederive these algorithms as approximations of the Kalman filter and then carry out a thorough analysis of their performance. For each algorithm, we calculate a bound on its deviation from the Kalman filter performance. We also show that the propagated information matrix within the R-SD algorithm remains sparse in time, thus ensuring the applicability of this algorithm. To support these analytical results we present some computer simulations on synthetic sequences, which also show the computational feasibility of these algorithms

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:21 ,  Issue: 9 )