By Topic

Shadow puppetry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Brand, M. ; Mitsubishi Electr. Res. Lab., Cambridge, MA, USA

The mapping between 3D body poses and 2D shadows is fundamentally many-to-many and defeats regression methods, even with windowed context. We show how to learn a function between paths in the two systems, resolving ambiguities by integrating information over the entire length of a sequence. The basis of this function is a configural and dynamical manifold that summarizes the target system's behaviour. This manifold can be modeled from data with a hidden Markov model having special topological properties that we obtain via entropy minimization. Inference is then a matter of solving for the geodesic on the manifold that best explains the evidence in the cue sequence. We give a closed-form maximum a posteriori solution for geodesics through the learned density space, thereby obtaining optimal paths over the dynamical manifold. These methods give a completely general way to perform inference over time-series; in vision they support analysis, recognition, classification and synthesis of behaviours in linear time. We demonstrate with a prototype that infers 3D from monocular monochromatic sequences (e.g., back-subtractions), without using any articulatory body model. The framework readily accommodates multiple cameras and other sources of evidence such as optical flow or feature tracking

Published in:

Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on  (Volume:2 )

Date of Conference: