Cart (Loading....) | Create Account
Close category search window

Error detection and DEM fusion using self-consistency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schultz, H. ; Dept. of Comput. Sci., Massachusetts Univ., Amherst, MA, USA ; Riseman, E.M. ; Stolle, F.R. ; Dong-Min Woo

The ability to efficiently and robustly recover accurate 3D terrain models from sets of stereoscopic images is important to many civilian and military applications. Our long-term goal is to develop an automatic, multi-image 3D reconstruction algorithm that can be applied to these domains. To develop an effective and practical terrain modeling system, methods must be found for detecting unreliable elevations in digital elevation maps (DEMs), and for fusing several DEMs from multiple sources into an accurate and reliable result. This paper focuses on two key factors for generating robust 3D terrain models, (1) the ability to detect unreliable elevations estimates, and (2) to fuse the reliable elevations into a single optimal terrain model. The techniques discussed in this paper are based on the concept of using self-consistency to identify potentially unreliable points. We apply the self-consistency methodology to both the two-image and multi-image scenarios. We demonstrate that the recently developed concept of self-consistency can be effectively employed to determine the reliability of values in a DEM. Estimates with a reliability below an error threshold can be excluded from further processing. We test the effectiveness of the methodology, as well as the relationship between error rate and scene geometry by processing both real and photo-realistic simulations

Published in:

Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on  (Volume:2 )

Date of Conference:


Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.