By Topic

Empirical evaluation of dissimilarity measures for color and texture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Puzicha, J. ; Inst. fur Inf., Bonn Univ., Germany ; Buhmann, J.M. ; Rubner, Y. ; Tomasi, C.

This paper empirically compares nine image dissimilarity measures that are based on distributions of color and texture features summarizing over 1,000 CPU hours of computational experiments. Ground truth is collected via a novel random sampling scheme for color and via an image partitioning method for texture. Quantitative performance evaluations are given for classification, image retrieval, and segmentation tasks, and for a wide variety of dissimilarity measures. It is demonstrated how the selection of a measure, based on large scale evaluation, substantially improves the quality of classification, retrieval, and unsupervised segmentation of color and texture images

Published in:

Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on  (Volume:2 )

Date of Conference:

1999