By Topic

An integrated Bayesian approach to layer extraction from image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Torr, P.H.S. ; Microsoft Corp., Redmond, WA, USA ; Szeliski, R. ; Anandan, P.

This paper describes a Bayesian approach for modeling 3D scenes as a collection of approximately planar layers that are arbitrarily positioned and oriented in the scene. In contrast to much of the previous work on layer based motion modeling, which compute layered descriptions of 2D image motion, our work leads to a 3D description of the scene. We focus on the key problem of automatically segmenting the scene into layers as a precursor to recovery of stereo disparity data. The prior assumptions about the scene are formulated within a Bayesian decision making framework, and are then used to automatically determine the number of layers and the assignment of individual pixels to layers. Although using a collection of 3D layers has been previously proposed as an efficient and effective representation for multimedia applications, results to date have relied on hand segmentation. In contrast, the work described aims at fully automatic segmentation

Published in:

Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on  (Volume:2 )

Date of Conference: